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Abstract

A variational solution of the fundamental eigenmode is presented for high gain free
electron lasers driven by flat electron beam having unequal emittances, betatron

focusings and beam sizes in two transverse planes.
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1 Introduction

The main objective of this article is to expand our earlier work [1] on the
eigenmode solution for high gain FELs into the situation where electron beam
distribution is no longer axially symmetrical. Such a beam, generally termed
flat beam, may have unequal emittances, betatron focusings, or beam sizes in

two transverse planes. Earlier studies on this subject date back more than a
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decade ago. Using a special variational technique [2], the fundamental mode
was calculated by Xie [3] for parallel beam having elliptical cross section. Later,
a dispersion equation for the eigenvalue of the fundamental mode was derived
using a different technique by Chin et al. [4] for more general cases including
unequal emittances and betatron focusings. However, the latter technique was
known at birth [4] to introduce a systematic error when approaching the 1D
limit, thus compromising its accuracy for short wavelength FEL calculations,

and furthermore, the dispersion equation was not solved.

In this article, we present the first general flat beam solution and specific
calculations for the fundamental eigenmode and examine effects of flat beam
on high gain FEL performance. The eigenmode equation is formulated for flat
beam in section 2. The variational solution is derived in section 3. Finally,

specific calculations for the LCLS case are given in section 4.

2 Eigenmode Equation

We specify the radiation field by a complex envelope a,.(x, z,t) slowly varying
with respect to a carrier wave exp(k,z — w,t), where x = {z,y}, the carrier
frequency w, = ck, = 2mwc/\, is determined by the resonance condition k,
= 292k, /(1 + a2), vomc? is average electron energy, A, = 27 /k,, is wiggler
period, a, = e€BpmsAy/2mme, and By, is rms wiggler field assumed con-
stant along wiggler axis. The radiation field is normalized according to |a,| =
eEyms/kymc?, where E,,s(x, z,t) is rms amplitude of the electric field. Upon

introducing Fourier transform by
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where 6 = (k, + ky)z — w,t and v = w/w,, the eigenmode of the form a, =

a(x) exp(—ipz) can be determined by the mode equation [1,5,6]
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where p is the complex eigenvalue related to our earlier notation [1] by pu =
iq/2L1q+ kywAv, Ly, is the 1D power gain length, Av =v—1, 1= (v =) /70,
h = (2/v3)3, fz = 1 for helical wiggler and fp = Jo(Xw) — J1(Xw) for planar
wiggler, x,, = a2 /2(1+4a?), r. is the classical radius of electron, ng is the peak
electron volume density on the axis, F' = F| (x,p)F|(n) is unperturbed beam

distribution function normalized by

/ P*pF (x / dnFy(n) = 1.

Transverse focusing of the beam in wiggler is assumed to have a strength

invariant along the axis, thus betatron motion is governed by

dz dp. 5 dy  dpy 9
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where (3, = 1/kg, and 3, = 1/kg, are constant betafunctions.



To perform specific calculations, we use a Gaussian model with

2.,.2,,2 2.,.2,,2
1 e +pz2/k Y +py2/kﬁy 1 ~ n22
— 20% 20 _ 20
FL_Q?TO‘O’]C k c ' b FH_\/2 c
zVyhgriv3y TOoy

where o, = v/[3,€, and oy = \/% are rms beam sizes matched to the focusing
channel, ¢, and ¢, are rms emittances, and o, is relative rms energy spread.
Using X = {X,Y} = {z/0,,y/0,} and 7 = s/2L14, Eq. (1) can be expressed
in a more compact scaled form
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There are six scaling parameters in Eq. (2): 04 = L14/2k.02 and 74, =
L/ 2/@03 are diffraction parameters; 1., = 2L14k, kgze, and 1.y = 2L14k, kgye,
characterize effective spread in longitudinal phase due to emittance and be-
tatron focusing, and 7, = 2L4k,0, due to energy spread, respectively; and
Nw = 2L14k,Av is a frequency detuning parameter. The 1D power gain length

can now be expressed as

L4
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where [, is beam current and 4 = 17.05 kA is the Alfven current.



3 Variational Solution

Next, we present an approximate solution for the fundamental mode. Accord-
ing to the recipe of a special variational technique [2], a variational functional

may be constructed from Eq. (2) as
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Substituting into the variational functional a trial solution of the form

a(X) = exp(—a, X? — a,Y?),

where o, and «, are complex variational parameters to be determined, and

applying the variational conditions [2]
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to the resulting equation, we obtain three equations from which the eigenvalue

x and mode parameters o, and o, can be determined by
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where
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It is noted that in the limit of 1., = 7., = n, = 0, Eqgs.(3,4,5) are reduced to
the same equations studied earlier [3] for the case of parallel Gaussian beam

with elliptical cross section.

Given parameter o, and ¢, the mode properties can be determined com-

pletely by comparing the mode profile

oy
a=exp|——%H — —5 |

lop o,

with the usual Gaussian description
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where w, and w, are mode sizes, R, and R, are radii of phasefront curvature.

In particular, we have for mode sizes




Finally, power gain length of the fundamental mode is related to the eigenvalue

by Lg = le/ﬁi.
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Fig. 1. Ly as a function of R, varied from 1 to 50 with 3, and 3, optimized to

minimize L.
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Fig. 2. Optimized 3, and 3, as functions of R, varied from 1 to 50.



30

25| o A

Rs; and R,

10| i

0 10 20 30 40 50

Fig. 3. R, and R,, as functions of R, varied from 1 to 50 with optimized (3, and 3.

4 LCLS Examples

Given the solution of Eqs.(3,4,5), we are now ready to examine effects of flat
beam on high gain FEL performance. Let’s first define ratios of emittances,

betafunctions, beam sizes and mode sizes respectively by

Ro=% Ry="r R, =% p,="

€y By 7 Oy Wy
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Consider a scenario in which R, is increased from unity under the constraint
that 4D emittance e,6, = £3 is kept constant. At each value of R., L, is
minimized by varying 3, 8, and frequency detuning. We shall take LCLS
nominal design values for all other parameters [7]: A, = 1.5A, 7o = 28009,
I, = 3.4kA, ypg9 = 1.5mm-mrad, o, = 2 x 107%, a planar wiggler with \,, =

3cm and v/2a,, = 3.7. In this scenario R, is the only free varying parameter.

Figure 1 shows L, as a function of R. varied from 1 to 50 with optimized £,
and (3, given in Figure 2. At larger value of €., focusing has to be relaxed

with larger (3, to minimize gain reduction due to angular spread. On the other



Table 1

LCLS Examples

R, 1 10 50
o€z (mm-mr) | 1.5 | 4.74 10.6
Yogy (mm-mr) | 1.5 | 0.474 | 0.212
Be (m) 20 | 47 95
By (m) 20 | 94 | 6.7
oy (pm) 32 | 90 190
oy (pm) 32 13 7.1
wy (pm) 44 76 120
wy (pm) 44 29 26
0 (pr) 1.6 1.1 0.83
0, (ur) 1.6 | 24 | 3.1
Ly (m) 6.0 | 6.7 8.3
Lig (m) 31 | 3.1 3.3

hand, focusing can be enhanced with smaller 3, at smaller value of ¢,. Figure
3 shows R, and R, as functions of R, varied from 1 to 50. Notice the aspect
ratio of laser mode is much less than that of electron beam. More details are

given in Table 1 for three cases R. = 1, 10, 50.



5 Conclusions

We have presented an effective solution of the eigenmode for high gain FELs
driven by general flat beam. It is found that the gain length increases with
emittance ratio when 4D emittance is kept constant, and the rate of increase is
rather weak in the LCLS parameter regime if beam focusing is simultaneously
optimized. In addition, the aspect ratio of laser mode is much smaller than
that of electron beam for larger emittance ratio. Effects of flat beam in other
regimes and for other scenarios can be readily evaluated with the solution and

methods provided here.
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